How to Combine Inferences from Multiply-Imputed Data Sets: SAS and STATA Examples

Bo Klauth*

February 2, 2023

1. Introduction

This paper presents examples for producing estimates using Census-Enhanced Health and Retirement Study (CenHRS) data. The CenHRS crosswalk is constructed using a mix of both deterministic and probabilistic matching of HRS survey respondents to Census business data. Multiple imputation (MI) is necessary to conduct valid statistical inference with CenHRS data because it allows users to properly account for the additional variability induced by probabilistic matching. As such, the CenHRS crosswalk is designed with ten imputations for each HRS record. Because each imputation represents a single completed data set, there are in effect ten data sets, which have been stacked into a single file. Users should not attempt to calculate point estimates, standard errors, or confidence intervals for only one set of imputations or by treating the stacked file as a single data set without using appropriate MI analysis methods. For more information, see Rubin (1987).

This paper presents examples showing how these estimates are combined using SAS and STATA. SAS examples include how to combine means using the SAS PROC UNIVARIATE procedure and regression model coefficients from the SAS PROC REG, PROC GLM, or PROC MIXED procedures using the SAS PROC MIANALYZE procedure. STATA examples include how to combine means and regression model coefficients using mi estimate: mean and mi estimate: regress, respectively.

2. Example Data

For our examples, we create a fictitious longitudinal data set simulating the structure of CenHRS data containing the variable year (taking on values 2010, 2011, and 2012), pid (a person identifier), two analysis variables firm_size (firm size) and hr_wage (hourly wages), and Replicate (an implicate identifier that runs from 1 to 10) to demonstrate various ways users can combine the estimates from multiply-imputed data sets. Please find the data sets (SAS: data_mi_2010_2012.sas7bdat; STATA: data_mi_2010_2012.dta) accompanying this document from the CenHRS website: https://cenhrs.isr.umich.edu/documentation.

To demonstrate how to use SAS and STATA to compute estimates using the multiply imputed data, we provide examples to compute summary statistics for the analysis variables as well as to compute regression model coefficients for the relationship between firm size as the independent variable and hourly wages as the dependent variable.

^{*}Survey Research Center, Institute for Social Research, University of Michigan. Please contact CenHRSinfo@umich.edu for questions related to this paper or the CenHRS project.

3. SAS Examples

We first demonstrate how users can combine means using the SAS PROC UNIVARIATE procedure and regression model coefficients from the SAS PROC REG, PROC GLM, or PROC MIXED procedures using the SAS PROC MIANALYZE procedure.

3.1. Modifying the Data to Use SAS

For our SAS code examples, we assume that users have downloaded the example data file (data_mi_2010_2012.sas7bdat) and stored it in a local directory, which we refer to as C:\mi.

The PROC MIANALYZE procedure is used to combine estimates from multiple imputations. To use the PROC MIANALYZE procedure, users must rename the imputation variable *Replicate* to *_Imputation_*, which is the variable name required by the procedure. In the code that follows, users can specify the location of the data using LIBNAME, load the data set, and rename the imputation variable. Then, PROC PRINT prints ten observations to view. See Output 01.

```
*Create Library;
libname mi "C:\mi";
Title "Analyzing multiply-imputed Data Sets";
* Modify some variables;
data mydata;
   set mi.data_mi_2010_2012;
   rename Replicate = _Imputation_;
run;
proc print data = mydata (obs = 10);
   title2 "Output 01: multiply-imputed Data (10 Observations)";
run;
```

Obs	firm_size	hr_wage	pid	Replicate	year
1	10690	22.22	388	1	2010
2	16068	29.29	115	1	2010
3	6374	22.22	13	1	2010
4	5527	12.12	348	1	2010
5	2467	21.21	154	1	2010
6	2552	9.09	319	1	2010
7	11809	48.48	399	1	2010
8	4712	24.24	343	1	2010
9	19259	42.42	34	1	2010
10	23209	26.26	197	1	2010

Analyzing Multiply-Imputed Data Sets Output 01: Multiply-Imputed Data (10 Observations)

3.2. Estimating Means and Standard Errors

Users can use PROC UNIVARIATE to compute the means and standard errors for the two variables. Note that users need to include the line "by _Imputation_;" in the procedure. Users can also have SAS output the results to a table called *outuni*. PROC PRINT prints the output for 2010, which includes 10 imputations. The results are shown in Output 02. Users should note that not all analysis variables vary across imputations as shown in Output 02. For example, if a data set containing HRS variables (e.g., hourly wages), which only have one imputation, is merged with a data file with 10 imputations, the between variance for the HRS variables across the 10 imputations in the merged data set should be zero.

```
* Sort data by year and _Imputation_;
proc sort data = mydata;
   by _Imputation_;
run;
* Calculate means from multiply-imputed Data Sets;
proc univariate data = mydata;
   var hr_wage firm_size;
    output out = outuni mean = hr_wage firm_size
    stderr = se_hr_wage se_firm_size;
   by _Imputation_;
   where year = 2010;
run;
* Print the output;
proc print data = outuni (obs = 10);
    title2 'Output 02: UNIVARIATE Means and Standard Errors (10 Imputations)';
run;
```

Obs	year	_Imputation_	hr_wage	firm_size	se_hr_wage	se_firm_size
1	2010	1	25.2177	14772.05	0.52544	481.407
2	2010	2	25.2177	14538.94	0.52544	450.074
3	2010	3	25.2177	14672.19	0.52544	453.076
4	2010	4	25.2177	14913.87	0.52544	466.780
5	2010	5	25.2177	14528.81	0.52544	458.591
6	2010	6	25.2177	14607.10	0.52544	450.552
7	2010	7	25.2177	14636.54	0.52544	453.645
8	2010	8	25.2177	14298.77	0.52544	456.432
9	2010	9	25.2177	14645.93	0.52544	469.530
10	2010	10	25.2177	14066.64	0.52544	445.643

Analyzing Multiply-Imputed Data Sets Output 02: UNIVARIATE Means and Standard Errors (10 Imputations)

Because the output *outuni* contains 10 means and standard errors derived from the 10 imputations, users will need to use PROC MIANALYZE to combine those means and standard errors.

```
* Combine the means;
proc mianalyze data = outuni;
   modeleffects hr_wage firm_size;
   stderr se_hr_wage se_firm_size;
   by year;
   title2 "Output 03: Combine Means from multiply-imputed Data Sets for 2010";
run;
```

PROC MIANALYZE produces results as shown in Output 03. Because the between variance for hourly wages equals zero, relevant statistics cannot be computed and are set to missing by SAS. The last table shows the combined estimates (means and standard errors) and the p values (Pr > |t|) for the firm size and hourly wages variables.

		Ou			ine Means					ata Se	ts		
					The MIAN	ALYZE F	Procedure	e					
					у	ear=201	0						
					Mode	I Inform	ation						
			Data Set WORK.OUTUNI										
			Number of Imputations 10										
			Variance Information (10 Imputations)]	
				Varian	ice			Relative Increase		action	Relative		
		Parameter	Between	With	nin Tot	al C		riance	Inform		Efficiency		
		hr_wage	0	0.2760	0.27609)1		0					
		firm_size	56738	2103	96 27280	9 171.	96 0.2	296641	0.2	37593	0.976792		
				Par	ameter Esti	mates ('	10 Imputa	tions)					
												t for H0:	
Parameter	Estima	te Std E	rror 95% C	Confide	nce Limits	DF	Minimu	m Ma	ximum	Theta	0 Parame	eter=Theta0	Pr > t
hr_wage	25.2176	80 0.525	444				25.2176	30 25.	217680		0		

Analyzing Multiply-Imputed Data Sets

3.3. Estimating Model Coefficients Using PROC REG

13537.12

14568 522.310835

firm size

Using the regression model specified in Section 2 estimating the relationship of firm size on hourly wages, users can analyze the data using PROC REG by including the "by _Imputation_;" statement. Here, we estimate model coefficients for 2010.

14067

14914

0

27.89 <.0001

15599.05 171.96

Users also need to output the coefficient table for PROC MIANALYZE. This table is named outreg in this example.

```
title2;
* Sort data by imputation;
proc sort data = mydata;
  by _Imputation_;
run;
*Using PROC REG;
proc reg data = mydata outest = outreg covout ;
 model hr_wage = firm_size;
  by _Imputation_;
  where year = 2010;
run;
* Print regression output;
proc print data = outreg (obs = 10);
  title2 "Output 04: PROC REG Output from multiply-imputed data sets";
run;
```

The output is shown in Output 04.

Obs	_Imputation_	_MODEL_	_TYPE_	_NAME_	_DEPVAR_	_RMSE_	Intercept	firm_size	hr_wage
1	1	MODEL1	PARMS		hr_wage	10.8268	18.9200	0.000426326	-1
2	1	MODEL1	COV	Intercept	hr_wage	10.8268	0.6768	000029946	-
3	1	MODEL1	COV	firm_size	hr_wage	10.8268	-0.0000	0.00000002	-
4	2	MODEL1	PARMS		hr_wage	10.8517	18.6733	0.000450130	-1
5	2	MODEL1	COV	Intercept	hr_wage	10.8517	0.7280	000033876	
6	2	MODEL1	COV	firm_size	hr_wage	10.8517	-0.0000	0.00000002	
7	3	MODEL1	PARMS		hr_wage	10.8090	18.5109	0.000457109	-1
8	3	MODEL1	COV	Intercept	hr_wage	10.8090	0.7247	000033470	
9	3	MODEL1	COV	firm_size	hr_wage	10.8090	-0.0000	0.00000002	-
10	4	MODEL1	PARMS		hr_wage	10.8061	18.5911	0.000444322	-1

Analyzing Multiply-Imputed Data Sets Output 04: PROC REG Output from Multiply-Imputed Data Sets

Next, users can use PROC MIANALYZE to combine model coefficients. The results are shown in Output 05. The last table shows the combined estimates (coefficients and standard errors) and the p values (Pr > |t|) for the firm size and hourly wage variables.

```
* Combine regression coefficients from multiply-imputed data sets;
proc mianalyze data = outreg;
    modeleffects Intercept firm_size;
    title2 "Output 05: Combine Model Coefficients from PROC REG";
run;
```

		Outp	ut 05: Con	ibine Mod			s from F	ROC	REG			
				The MIAN	ALYZE F	Procedure	е					
				Mode	l Inform	ation						
			Data	Data Set WORK.OU								
			Num	Number of Imputations								
	Variance Information (10 Imputations)											
			Varia	nce			Relati		Fracti Missi			
	Paramete	er Betwe	en V	/ithin	Total	DF	in Varia		Informati	•		
	Intercept	0.0180	0.70	09118 0	.728936	12176	0.027	7947	0.0273	47 0.997273		
	firm_size	8.313198E	-11 2.23797	72E-9 2.329	4224E-9	5840.1	0.040	0861	0.0395	0.996057		
			Pa	rameter Esti	mates (1	10 Imputa	ations)					
Parameter	Estimate	Std Error	95% Confid	ence Limits	DF	Minimu	ım Max	imum	Theta0	t f Parameter=T	or H0: Theta0	Pr > t
Intercept	18.698838	0.853777	17.02530	20.37238	12176	18.5108	93 18.9	19971	0		21.90	<.0001
firm_size	0.000448	0.000048264	0.00035	0.00054	5840.1	0.0004	26 0.0	00457	0		9.27	<.0001

Analyzing Multiply-Imputed Data Sets

3.4. Estimating Model Coefficients Using PROC GLM

The code that follows shows how users can use PROC GLM to run the regression model and produce necessary output tables for PROC MIANALYZE. The "by _Imputation_;" statement is needed. In addition, users need to obtain the model coefficients and the inverse matrix produced by PROC GLM.

```
title2;
* Using PROC GLM;
proc glm data = mydata;
    model hr_wage = firm_size/inverse;
    by _Imputation_;
    ods output ParameterEstimates = glmparms
    InvXPX = glmxpxi;
    where year = 2010;
run;
proc print data = glmparms (obs = 8);
    var _Imputation_ Parameter Estimate StdErr;
    title2 'Output 06: GLM Model Coefficients';
run;
proc print data = glmxpxi (obs = 12);
    var _Imputation_ Parameter Intercept firm_size;
    title2 'Output 07: GLM X''X Inverse Matrices';
run;
```

The model coefficients and inverse matrix are shown in Outputs 06 and 07, respectively.

Obs	_Imputation_	Parameter	Estimate	StdErr
1	1	Intercept	18.91997105	0.82268388
2	1	firm_size	0.00042633	0.00004502
3	2	Intercept	18.67327023	0.85325351
4	2	firm_size	0.00045013	0.00004827
5	3	Intercept	18.51089317	0.85131635
6	3	firm_size	0.00045711	0.00004776
7	4	Intercept	18.59112269	0.84339896
8	4	firm_size	0.00044432	0.00004635

Analyzing Multiply-Imputed Data Sets Output 06: GLM Model Coefficients

Analyzing Multiply-Imputed Data Sets Output 07: GLM X'X Inverse Matrices

Obs	_Imputation_	Parameter	Intercept	firm_size
1	1	Intercept	0.0057738552	-2.554727E-7
2	1	firm_size	-2.554727E-7	1.729433E-11
3	1	hr_wage	18.919971053	0.0004263261
4	2	Intercept	0.0061824188	-2.876702E-7
5	2	firm_size	-2.876702E-7	1.978619E-11
6	2	hr_wage	18.673270233	0.0004501298
7	3	Intercept	0.0062031777	-2.864724E-7
8	3	firm_size	-2.864724E-7	1.952485E-11
9	3	hr_wage	18.510893166	0.0004571087
10	4	Intercept	0.006091533	-2.743442E-7
11	4	firm_size	-2.743442E-7	1.839524E-11
12	4	hr_wage	18.591122685	0.0004443218

Finally, users can use PROC MIANALYZE to combine the model coefficients. The results are shown in Output 08. The last table shows the combined estimates (coefficients and standard errors) and the p values (Pr > |t|) for firm size and hourly wages.

```
* Combine regression coefficients from multiply-imputed data sets;
proc mianalyze parms = glmparms xpxi = glmxpxi;
  modeleffects Intercept firm_size;
```

title2 "Output 08: Combine Regression Coefficients from PROC GLM";
run;

		Output 0	Analy 8: Combi	_			outed Da				N			
				The	MIANAL	YZE P	rocedure	•						
					Model Ir	nform	ation							
			PARM	IS Data	a Set	V	WORK.GLMPARMS							
		XPXI Data Set WORK.GLMXPXI												
		Number of Imputations 10												
		Variance Information (10 Imputations)												
			Varia	ince			Relati			Fracti		Relative		
	Parameter	Betwe	en V	Vithin		Total	DF	in Varia		Missi Informati	-	Efficiency		
	Intercept	0.0180	0.7	09118	0.72	28936	12176	0.027	947	0.0273	847	0.997273		
	firm_size	8.313198E-	11 2.23797	72E-9	2.32942	24E-9	5840.1	0.040	861	0.0395	85	0.996057		
			Pa	ramete	er Estima	ates (1	0 Imputa	tions)						
Parameter	Estimate	Std Error	95% Confid	lence l	imits	DF	Minimu	m Maxi	num	Theta0	Par	t for ameter=The		Pr > t
Intercept	18.698838	0.853777	17.02530	20.	37238 1	12176	18.5108	93 18.91	9971	0		2	1.90	<.0001

3.5. Estimating Model Coefficients Using PROC MIXED

0.00035

0.000448 0.000048264

firm_size

If users wish to use PROC MIXED to perform a regression analysis, the code that follows shows how to output the model coefficients as an input table for PROC MIANALYZE. The "by _Imputation_;" statement is needed. The model coefficients are shown in Output 09.

0.00054 5840.1

0.000426

0.000457

0

9.27

<.0001

```
title2;
* Using PROC MIXED;
proc mixed data = mydata;
    * put a class statement here if applicable;
    model hr_wage = firm_size/ solution;
    by _Imputation_;
    where year = 2010;
        ods output SolutionF = mxparms;
run;
* Print the output from proc mixed;
proc print data = mxparms (obs = 8);
    title2 'Output 09: MIXED Model Coefficients';
run;
```

Obs	_Imputation_	Effect	Estimate	StdErr	DF	tValue	Probt
1	1	Intercept	18.9200	0.8227	498	23.00	<.0001
2	1	firm_size	0.000426	0.000045	498	9.47	<.0001
3	2	Intercept	18.6733	0.8533	498	21.88	<.0001
4	2	firm_size	0.000450	0.000048	498	9.33	<.0001
5	3	Intercept	18.5109	0.8513	498	21.74	<.0001
6	3	firm_size	0.000457	0.000048	498	9.57	<.0001
7	4	Intercept	18.5911	0.8434	498	22.04	<.0001
8	4	firm_size	0.000444	0.000046	498	9.59	<.0001

Analyzing Multiply-Imputed Data Sets Output 09: MIXED Model Coefficients

Finally, users can use PROC MIANALYZE to combine the model coefficients from multiply-imputed data sets. The final combined coefficients are shown in Output 10 in the last table.

```
* Combine model coefficients from multiply-imputed data sets;
proc mianalyze parms(classvar = full) = mxparms;
    * put a class statement here if applicable;
    modeleffects Intercept firm_size;
    title2 "Output 10: Combine Model Coefficients from PROC MIXED";
run;
```

Analyzing Multiply-Imputed Data Sets Output 10: Combine Model Coefficients from PROC MIXED

The MIANALYZE Procedure

Model Infor	mation
PARMS Data Set	WORK.MXPARMS
Number of Imputations	10

	Variance Information (10 Imputations)												
		Variance			Relative Increase	Fraction Missing	Relative						
Parameter	Between	Within	Total	DF	in Variance								
Intercept	0.018016	0.709118	0.728936	12176	0.027947	0.027347	0.997273						
firm_size	8.313198E-11	2.2379772E-9	2.3294224E-9	5840.1	0.040861	0.039585	0.996057						

	Parameter Estimates (10 Imputations)										
Parameter	Estimate	Std Error	95% Confid	ence Limits	DF	Minimum	Maximum	Theta0	t for H0: Parameter=Theta0	Pr > t	
Intercept	18.698838	0.853777	17.02530	20.37238	12176	18.510893	18.919971	0	21.90	<.0001	
firm_size	0.000448	0.000048264	0.00035	0.00054	5840.1	0.000426	0.000457	0	9.27	<.0001	

4. STATA Examples

We next demonstrate how users can combine means and regression model coefficients using the STATA mi estimate: mean and mi estimate: regress commands, respectively.

4.1. Modifying the Data to Use STATA

For our code examples, we assume that users have downloaded the example data file (data_mi_2010_2012.dta) and stored it in a local directory, which we refer to as C:\mi.

The STATA Multiple Imputation procedures (StataCorp, 2021) require that the original and the multiplyimputed data sets are included as one data set. We have created a data set that meets the requirements. The MI data set includes the original data set (before imputation) and the three STATA MI "system" variables, namely _mi_m, _mi_id, and _mi_miss.

- $_mi_m$ is a data set indicator containing values m = 0, 1, 2, ..., M, where m = 0 represents the original data set, and m = 1, 2, ..., M represent the imputed data sets.
- _mi_id is a unique ID variable.
- $_mi_miss$ is the missing indicator variable (1 = missing, 0 = not missing).

Please note that in the original data set (m = 0) only the variables <u>mi_m</u> and <u>mi_id</u> contain values. The rest of the variables were set to missing (".") because the values belonging to those variables were not needed for the mi estimate procedures.

```
* Get the data.
global data_dir = "C:\mi"
use "$data_dir\data_mi_2010_2012.dta", clear
browse if Replicate == 1
```

1501 10690 22.22 388 1 2010 1 961 1502 16068 29.29 115 1 2010 1 52 1503 6374 22.22 13 1 2010 1 109 1504 5527 12.12 348 1 2010 1 829 1505 2467 21.21 154 2010 1 184	iss
1503 6374 22.22 13 1 2010 1 109 1504 5527 12.12 348 1 2010 1 829 1505 2467 21.21 154 1 2010 1 184	-
1504 5527 12.12 348 1 2010 1 829 1505 2467 21.21 154 1 2010 1 184	-
1505 2467 21.21 154 1 2010 1 184	-
	-
	-
1506 2552 9.09 319 1 2010 1 730	-
1507 11809 48.48 399 1 2010 1 997	-
1508 4712 24.24 343 1 2010 1 814	-
1509 19259 42.42 34 1 2010 1 808	-
1510 23209 26.26 197 1 2010 1 325	-
1511 11900 11.11 57 1 2010 1 1360	

4.2. Estimating Means and Standard Errors

The code that follows shows how to compute means and standard errors for the variables hr_wage and firm_size for the year 2010 from the multiply-imputed data set. The printout below shows the computed means of both variables for 2010.

* Compute mean for the year 2010
mi estimate: mean hr_wage firm_size if year == 2010

Multiple-imputa	tion estimat	tes	Imput	ations	=	10
Mean estimation	L		Numbe	r of obs	=	500
			Avera	ge RVI	=	0.1750
			Large	st FMI	=	0.2384
			Comple	ete DF	=	499
DF adjustment:	Small sam	ple	DF:	min	=	118.70
				avg	=	307.86
Within VCE type	: Analy	tic		max	=	497.01
	Mean	Std.	Err.	[95%	Conf.	Interval]
hr_wage	25.21768	. 52	5444	24.18	531	26.25005
firm size	14568.08	500	3108	13533	02	15602.34

4.3. Estimating Model Coefficients

I

The code that follows shows how to run a regression model that includes the variable hr_wage as the outcome variable and firm_size as the predictor. Here, we estimate model coefficients for 2010.

```
* Compute regression using the multiply-imputed data set
mi estimate: regress hr_wage firm_size if year == 2010
```

Multiple-imputation estimates	Imputations	=	10
Linear regression	Number of obs	=	500
	Average RVI	=	0.0472
	Largest FMI	=	0.0398
	Complete DF	=	498
DF adjustment: Small sample	DF: min	=	440.59
	avg	=	452.36
	max	=	464.13
Model F test: Equal FMI	F(1, 440.6)	=	85.98
Within VCE type: OLS	Prob > F	=	0.0000
hr_wage Coef. Std. Err. t	₽> t [95% C	onf.	Interval]
firm_size .0004475 .0000483 9.27	0.000 .00035	27	.0005424
cons 18.69884 .8537775 21.90	0.000 17.021	09	20.37659

Conclusion

The CenHRS crosswalk is constructed using a mix of both deterministic and probabilistic matching of the employers of HRS survey respondents to Census business data. This type of data set contains multiply imputed data sets stacked in a single data file and requires MI procedures to produce valid statistical inferences. The SAS and STATA MI examples outlined in this document provide guidance on applying appropriate MI procedures to CenHRS data or other MI data sets.

References

Rubin, D. (1987). Multiple imputation for nonresponse in surveys. John Wiley.
StataCorp. (2021). Stata multiple-imputation reference manual: Release 17. Stata Press. https://www.stata.com/manuals/mi.pdf